(LeetCodeHot100)33. 搜索旋转排序数组——search-in-rotated-sorted-array
(LeetCodeHot100)33. 搜索旋转排序数组——search-in-rotated-sorted-array
zhangzhang33. 搜索旋转排序数组——search-in-rotated-sorted-array
整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 向左旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 下标 3 上向左旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
示例 1:
1 | 输入:nums = [4,5,6,7,0,1,2], target = 0 |
示例 2:
1 | 输入:nums = [4,5,6,7,0,1,2], target = 3 |
示例 3:
1 | 输入:nums = [1], target = 0 |
提示:
1 <= nums.length <= 5000-104 <= nums[i] <= 104nums中的每个值都 独一无二- 题目数据保证
nums在预先未知的某个下标上进行了旋转 -104 <= target <= 104
- 查找看到
log n就要想到二分查找
方法一:二分查找
思路和算法
对于有序数组,可以使用二分查找的方法查找元素。
但是这道题中,数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,这还能进行二分查找吗?答案是可以的。
可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6 这个位置分开以后数组变成了 [4, 5, 6] 和 [7, 0, 1, 2] 两个部分,其中左边 [4, 5, 6] 这个部分的数组是有序的,其他也是如此。
这启示我们可以在常规二分查找的时候查看当前 mid 为分割位置分割出来的两个部分 [l, mid] 和 [mid + 1, r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分查找的上下界,因为我们能够根据有序的那部分判断出 target 在不在这个部分:
- 如果
[l, mid - 1]是有序数组,且target的大小满足 [nums[l],nums[mid]==)==,则我们应该将搜索范围缩小至[l, mid - 1],否则在[mid + 1, r]中寻找。 - 如果
[mid, r]是有序数组,且target的大小满足 [nums[mid+1],nums[r]],则我们应该将搜索范围缩小至[mid + 1, r],否则在[l, mid - 1]中寻找。
需要注意的是,二分的写法有很多种,所以在判断 target 大小与有序部分的关系的时候可能会出现细节上的差别。
1 | package com.example.leetcode; |
复杂度分析
- 时间复杂度: O(logn),其中 n 为 nums 数组的大小。整个算法时间复杂度即为二分查找的时间复杂度 O(logn)。
- 空间复杂度: O(1) 。我们只需要常数级别的空间存放变量。



